Minimization of Multiple-Valued Decision Diagrams Based on Matrix Computation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar Multiple-Valued Decision Diagrams

In VLSI, crossings occupy space and cause delay. Therefore, there is significant benefit to planar circuits. We propose the use of planar multiple-valued decision diagrams to produce planar multiple-valued circuits. Specifically, we show conditions on 1) threshold functions, 2 symmetric functions, and 3) monodiagrams. Our results apply to binary functions, as well. For example, we show that all...

متن کامل

Augmented Sifting of Multiple-Valued Decision Diagrams

Discrete functions are now commonly represented by binary (BDD) and multiple-valued (MDD) decision diagrams. Sifting is an effective heuristic technique which applies adjacent variable interchanges to find a good variable ordering to reduce the size of a BDD or MDD. Linear sifting is an extension of BDD sifting where XOR operations involving adjacent variable pairs augment adjacent variable int...

متن کامل

Heuristics to Minimize Multiple-Valued Decision Diagrams

In this paper, we propose a method to minimize multiple-valued decision diagrams (MDDs) for multipleoutput functions. We consider the following: (1) a heuristic for encoding the 2-valued inputs; and (2) a heuristic for ordering the multiple-valued input variables based on sampling, where each sample is a group of outputs. We first generate a 4-valued input 2-valued multiple-output function from...

متن کامل

On the Construction of Multiple-Valued Decision Diagrams

Decision diagrams are the state-of-the-art representation for logic functions, both binary and multiple-valued. Here we consider ways to improve the construction of multiple-valued decisions diagrams (MDD). Efficiency is achieved through the use of a simple computed table. We compare the use of recursive MIN and MAX as primitive operations in multiple-valued decision diagram construction to the...

متن کامل

Minimization of Quantum Multiple-valued Decision Diagrams Using Data Structure Metrics

This paper describes new metrics for size minimization of the data structure referred to as quantum multiple-valued decision diagrams (QMDD). QMDD are used to represent the matrices describing reversible and quantum gates and circuits. We explore metrics related to the frequency of edges with non-zero weight for the entire QMDD data structure and their histograms with respect to each variable. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Applied Sciences

سال: 2008

ISSN: 1546-9239

DOI: 10.3844/ajassp.2008.158.164